

RESILEX webinar, Monday 20.01.2025

ECO-DESIGN PV MODULES: BIO-BASED MATERIALS INVESTIGATION Re Si lex : CSEM

CSEM COMPANY OVERVIEW

We are a public-private, non-profit, Swiss technology innovation center.

We enable competitiveness through innovation by developing and transferring world-class technologies to industry.

CSEM DNA COMES FROM WATCHMAKING ROOTS

CSEM FOCUS ON THREE RESEARCH PRIORITIES

SUSTAINABLE ENERGY: RESEARCH ACTIVITIES

 $[$ **] in gCO₂eq/kWh [1] IPCC 2014 - Climate Change 2014: Mitigation of Climate Change

RESILEX PROJECT: PV MODULES

• PV provide electricity with less than 5% of the GHG emission^[**] of coal power^[1] but ways for improvement at manufacturing and end of life level

Photovoltaics (PV) is key for transition to lower environmental impact energy sources

PV modules on roof Individual PV module

 $[$ **] in gCO₂eq/kWh [1] IPCC 2014 - Climate Change 2014: Mitigation of Climate Change

RESILEX PROJECT: PV MODULES

• PV provide electricity with less than 5% of the GHG emission^[**] of coal power^[1] but ways for improvement at manufacturing and end of life level

Demonstrate sustainable, ecodesigned PV cells & modules

• Investigation of various components & materials at cell and module levels to reduce the environmental impact of PV modules

Photovoltaics (PV) is key for transition to lower environmental impact energy sources

PV modules on roof Individual PV module

Investigation of eco-design/bio-based materials for PV module components

ECO-DESIGN PV MODULES

Conventional module BOM:

Components with impacts on environment^{[1]:} aluminium frame > glass > oil-based and/or fluorinated polymers******

Eco-design BoM investigation:

- Reduce environmental impact: circular economy precepts^[2]
- While keeping high reliability (kWh) and efficiency (KWp & KWh)

 \blacksquare Frame Grina Germany EU china GGI Germany G BS, China Guest EU **G**Grev \mathbb{C} CSem

ECO-DESIGN PV MODULES

Conventional module BOM:

• Components with impacts on environment[1]: aluminium frame > glass > oil-based and/or fluorinated polymers******

Eco-design BoM investigation:

- Reduce environmental impact: circular economy precepts^[2]
- While keeping high reliability (kWh) and efficiency (KWp & KWh)

Biobased materials:

- Completely or partially derived from biomass (wood, bio-based polymers or bio-based composites)
- Can decrease dependance on fossil resources and mitigate associated environmental consequences

Are bio-based material suitable for PV? Is it environmentally relevant?

[1] Müller et al., Solar Energy Materials and Solar Cells, 230, 9 2021 [2] Heath et al., Journal of the Air & Waste Management Association, 72(6):478-539, 6

[1] Müller et al., Solar Energy Materials and Solar Cells, 230, 9 2021 [2] Heath et al., Journal of the Air & Waste Management Association, 72(6):478-539, 6

ECO-DESIGN BACKSHEET

- Front glass presents high impact \rightarrow could be replaced by polymer frontsheet using rigid backsheet for mechanical stability
- Conventional backsheet low environmental/CO₂ impact but:
	- Non-rigid material
	- Multiliayer polymers PET/fluorinated ➔ oil-based and fluor is costly to treat and manage during end-of-life due to fluorinated emissions and wastes[2]

[1] Müller et al., Solar Energy Materials and Solar Cells, 230, 9 2021 [2] Heath et al., Journal of the Air & Waste Management Association, 72(6):478-539, 6

ECO-DESIGN BACKSHEET

- Front glass presents high impact ➔ could be replaced by polymer frontsheet using rigid backsheet for mechanical stability
- Conventional backsheet low environmental/CO₂ impact but:
	- Non-rigid material
	- Multiliayer polymers PET/fluorinated ➔ oil-based and fluor is costly to treat and manage during end-of-life due to fluorinated emissions and wastes[2]
- **Objective:** developments of eco-design rigid composite backsheet to replace conventional one

→ Investigation of biobased backsheet made of flax fibers composite and polypropylene (PP)

- Flax = bio-based material
- PP could be bio-sourced

PP/flax fibers backsheet

11 • Eco-design PV modules: bio-based materials investigation

IMPLEMENTATION OF FLAX BACKSHEET

1200

1000

800

Conventional structure: glass/backsheet

100

• Majority of PV modules

Y-pixel number
Y-pixel 200 250 00 300

Lightweight structure: polymer frontsheet/rigid backsheet • For specific application or weight limited roofs

→ Successful lamination process: compatibility with other materials, no bubbles, no cell breaking

IMPLEMENTATION OF FLAX BACKSHEET

Conventional structure: glass/backsheet

• Majority of PV modules

Lightweight structure: polymer frontsheet/rigid backsheet • For specific application or weight limited roofs

Bifacial PERC solar cell Solar the second of the second and the second and the second and the second of the second second second in the second of the

→ Successful lamination process: compatibility with other materials, no bubbles, no cell breaking

Challenges:

- Low adhesion between encapsulant and backsheet: **key for reliability**
- Delamination interface: inside the composite itself, at the PP resin/flax fibers interface
- **→** Further investigations to improve the composite adhesion required

FLAX BACKSHEET MODULES RELIABILITY

Reliability testing:

- Damp Heat (DH): 85°C, 85%RH
	- Critical for humidity sensitive cell technologies
	- IEC norm: power loss <5% after 1000 hours
- Thermal Cycling (TC) -40°C \rightarrow +85°C (at MPP for ramp up)
	- Critical for potential mismatch between thermal expansion coefficients of the different PV components
	- IEC norm: power loss <5% after 200 cycles

FLAX BACKSHEET MODULES RELIABILITY

Reliability testing:

- Damp Heat (DH): 85°C, 85%RH
	- Critical for humidity sensitive cell technologies
	- IEC norm: power loss <5% after 1000 hours
- Thermal Cycling (TC) -40°C \rightarrow +85°C (at MPP for ramp up)
	- Critical for potential mismatch between thermal expansion coefficients of the different PV components
	- IEC norm: power loss <5% after 200 cycles
- Lightweight PV modules integrating flax backsheet presents high reliability, similar to the conventional structure
	- DH: all PV modules pass 2x IEC norm
	- TC: all PV modules pass 1x IEC, conventional structure with flax backsheet fall below -5% after ~270 hours

→ Promising results: Flax backsheets pass 1x the IEC norm in DH and TC for both conventional and lightweight structure

FLAX BACKSHEET MODULES IMPROVEMENTS

Further eco-design BoM improvement:

- Reduce environmental impact
- Improve reliability

Lightweight PV modules:

- Polymer frontsheets exist but many are fluorinated^[2] → CSEM developed its own non-fluorinated frontsheet
- Backsheet flax/PP
- CSEM formulation for encapsulant can be bio-sourced

FLAX BACKSHEET MODULES IMPROVEMENTS

Further eco-design BoM improvement:

- Reduce environmental impact
- Improve reliability

Lightweight PV modules:

- Polymer frontsheets exist but many are fluorinated^[2] → CSEM developed its own non-fluorinated frontsheet
- Backsheet flax/PP
- CSEM formulation for encapsulant can be bio-sourced

DH: IBC still stable after 2xIEC & SHJ passed below IEC norm after 1500 hours ➔ SHJ solar cell technologies are more sensitive to humidity

→ Lightweight PV modules integrating nonfluorinated frontsheet, **CSEM encapsulant** and **flax backsheet** pass the IEC norm in TC and DH

FLAX BACKSHEET MODULES RELIABILITY

Environmental impact of the modules production:

- Glass-glass modules ➔ highest global warming potential due to the glass contribution
- CSEM non-fluorinated polymer frontsheet and flax backsheet **→ lowest environmental impact**

Global warming potential (GWP) in $kCO₂$ eq/kWp of the modules production

FLAX BACKSHEET MODULES RELIABILITY

Environmental impact of the modules production:

- Glass-glass modules ➔ highest global warming potential due to the glass contribution
- CSEM non-fluorinated polymer frontsheet and flax backsheet **→ lowest environmental impact**

Flax backsheet:

- Higher environmental impact than conventional backsheet
- But provides the mechanical stability allowing to remove the glass ➔ reduce the total PV module GWP
- **→ In-depth investigation of the different LCA impact categories** to compare flax and conventional backsheet env. impacts
- \rightarrow Results are for module manufacturing (CO₂eq./kWp): important to investigate the module lifetime and end of life(CO $_2$ /kWh)

Global warming potential (GWP) in kCO_2 eq/kWp of the modules production

→ PV module reliability impact: find the best trade-off between long lifetime and eco-design PV module BOM

CONCLUSION AND NEXT STEPS

- Environmental benefits of PV modules with biobased materials are not always guaranteed and require validation
	- **→ Require holistic approach considering module performance, module lifetime, module** production and end-of life
- Removing front glass of PV modules is significant to reduce its environmental impact ➔ Need of a rigid composite backsheet to bring mechanical stability
- Flax backsheets demonstrated promising results:
	- Successful lamination process compatible with others PV module components
	- Passed the IEC norm in DH and TC for both conventional and lightweight structures
	- Non-fluorinated composite & the PP can be bio-sourced

→ The environmental impact of flax backsheet will be investigated in more details, especially by comparing the different impact categories, to investigate their contributions in the total $CO₂$ eq emission

: csem

THANK YOU FOR YOUR **ATTENTION**

Laurie-Lou Senaud *Senior R&D engineer Crystalline Silicon Solar Cells* lls@csem.ch

REFERENCES

• [IPCC 2014 - Climate Change 2014: Mitigation of Climate Change] Bruckner T., I.A. Bashmakov, Y. Mulugetta, H. Chum, A. de la Vega Navarro, J. Edmonds, A. Faaij, B. Fungtammasan, A. Garg, E. Hertwich, D. Honnery, D. Infield, M. Kainuma, S. Khennas, S. Kim, H.B. Nimir, K. Riahi, N. Strachan, R. Wiser, and X. Zhang, 2014: Energy Systems. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA?

CSEM \bullet **FACING THE CHALLENGES OF OUR TIME**